Creational Design Patterns

Factory
Method

Provides an interface for creating objects
In a superclass, but allows subclasses to Credit
refactoring.guru/

alter the type of objects that will be

created.

Creational Design Patterns

Abstract
Factory

Lets you produce families of related
objects without specifying their concrete
classes.

Credit:
refactoring.guru/

Creational Design Patterns

Lets you construct complex objects step
by step. The pattern allows you to produce
different types and representations of an

Credit:
refactoring.guru/

object using the same construction code.

Creational Design Patterns

. Prototype

Lets you copy existing objects without
making your code dependent on

Credit:
refactoring.guru/

their classes.

Creational Design Patterns

q ﬂ 9] Singleton
Lets you ensure that a class has only one

Instance, while providing a global access
point to this instance.

Structural Design Patterns

Adapter

Allows objects with incompatible
interfaces to collaborate.

Credit:
refactoring.guru/

Structural Design Patterns

Bridge

PAY

Lets you split a large class or a set of
closely related classes into two separate
hierarchies—abstraction and e

Implementation—which can be developed
independently of each other.

Structural Design Patterns

Composite

Lets you compose objects into tree
structures and then work with these -

refactoring.guru/

structures as if they were individual

objects.

Structural Design Patterns

Decorator

Lets you attach new behaviors to objects
by placing these objects inside special Cradit
refactoring.guru/

wrapper objects that contain the
behaviors.

Structural Design Patterns

Facade

Provides a simplified interface to a library,
a framework, or any other complex set of
classes. Credit

refactoring.guru/

Structural Design Patterns

Flyweight

Lets you fit more objects into the
available amount of RAM by sharing

common parts of state between multiple oo
objects instead of keeping all of the data
in each object.

Structural Design Patterns

L > :ID Proxy

Lets you provide a substitute or
placeholder for another object. A proxy
controls access to the original object,
allowing you to perform something either factoring guru/
before or after the request gets through to

the original object.

Behavioral Design Patterns

Chain of
E@ Responsibili

ty

Lets you pass requests along a chain of

handlers. Upon receiving a request, each
handler decides either to process the efactorme uru/
request or to pass it to the next handler in

the chain.

Behavioral Design Patterns

i | | Al

; = Command

ye

Turns a request into a stand-alone object
that contains all information about the

request. This transformation lets you pass
requests as a method arguments, delay or factoring guru/
queue a request’s execution, and support

undoable operations.

Behavioral Design Patterns

% Iterator

EpEpEpEgKkpl

Lets you traverse elements of a collection

without exposing its underlying

Credit:
refactoring.guru/

representation (list, stack, tree, etc.).

Behavioral Design Patterns

[e[_Jeo[] Mediator
L]

Lets you reduce chaotic dependencies

between objects. The pattern restricts
direct communications between the Credit:
refactoring.guru/

objects and forces them to collaborate
only via a mediator object.

Behavioral Design Patterns

3
o I Memento

Lets you save and restore the previous
state of an object without revealing the
details of its implementation.

Credit:
refactoring.guru/

Behavioral Design Patterns

Lets you define a subscription mechanism

to notify multiple objects about any -
refactoring.guru/

events that happen to the object they're .

observing.

Behavioral Design Patterns

State

Lets an object alter its behavior when its

Credit:

Internal state changes. It appears as if the sy
object changed its class.

Behavioral Design Patterns

e F---

LA e e

; @ Strategy

Lets you define a family of algorithms, put

each of them into a separate class, and
make their objects interchangeable.

Behavioral Design Patterns

; Template

s3552 Method

Defines the skeleton of an algorithm in

the superclass but lets subclasses override .

refactoring.guru/

specific steps of the algorithm without

changing its structure.

Behavioral Design Patterns

=
f’ E L] L]
|:|: T Visitor
= B B
N ERS

Lets you separate algorithms from the
objects on which they operate. -

refactoring.guru/

Composing Methods

Much of refactoring is devoted to correctly composing methods. In most cases, excessively long methods are the
root of all evil. The vagaries of code inside these methods conceal the execution logic and make the method

extremely hard to understand—and even harder to change.

The refactoring technigues in this group streamline methods, remove code duplication, and pave the way for

future improvements.

§ Extract Method § Replace Temp with Query & Replace Method with Method
% Inline Method § Split Temporary Variable Object
& Extract Variable § Remove Assignments to 3 Substitute Algorithm

§ Inline Temp Parameters

Credit:
refactoring.guru/

Moving Features between Objects

Even if you have distributed functionality among different classes in a less-than-perfect way, there is still hope.

These refactoring techniques show how to safely move functionality between classes, create new classes, and

hide implementation details from public access.

§ Move Method % Hide Delegate & Introduce Foreign Method

8 Move Field & Remove Middle Man § Introduce Local Extension

5 Extract Class

8 Inline Class

Credit:
refactoring.guru/

Organizing Data

These refactoring technigues help with data handling, replacing primitives with rich class functionality. Another

important result is untangling of class associations, which makes classes more portable and reusable.

& Change Value to Reference

& Change Reference to Value

& Duplicate Observed Data

§ Self Encapsulate Field

& Replace Data Value with Object

& Replace Array with Object

§ Change Unidirectional
Association to Bidirectional

& Change Bidirectional
Association to Unidirectional

§ Encapsulate Field
§ Encapsulate Collection

§ Replace Magic Number with
Symbolic Constant

§ Replace Type Code with Class

& Replace Type Code with
Subclasses

& Replace Type Code with
State/Strategy

& Replace Subclass with Fields

Credit:
refactoring.guru/

Simplifying Conditional Expressions

Conditionals tend to get more and more complicated in their logic over time, and there are yet more techniques

to combat this as well.

& Consolidate Conditional & Replace Conditional with § Introduce Null Object
Expression Polymorphism & Introduce Assertion
& Consolidate Duplicate & Remove Control Flag
Conditional Fragments & Replace Nested Conditional
§ Decompose Conditional with Guard Clauses
Credit:

refactoring.guru/

interaction between classes.

§ Add Parameter
& Remove Parameter
§ Rename Method

§ Separate Query from Modifier

§ Parameterize Method

§ Introduce Parameter Object
§ Preserve Whole Object
§ Remove Setting Method

§ Replace Parameter with
Explicit Methods

§ Replace Parameter with
Method Call

These techniques make method calls simpler and easier to understand. This, in turn, simplifies the interfaces for

& Hide Method

& Replace Constructor with
Factory Method

& Replace Error Code with
Exception

& Replace Exception with Test

Credit:
refactoring.guru/

Dealing with Generalization

Abstraction has its own group of refactoring techniques, primarily associated with moving functionality along the
class inheritance hierarchy, creating new classes and interfaces, and replacing inheritance with delegation and

vice versa.
§ Pull Up Field § Extract Subclass § Form Template Method
§ Pull Up Method § Extract Superclass & Replace Inheritance with
§ Pull Up Constructor Body § Extract Interface Delegation
& Push Down Field § Collapse Hierarchy & Replace Delegation with

Inheritance
& Push Down Method

Credit:
refactoring.guru/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

